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Effective Permittivities for Second-Order Accurate
FDTD Equations at Dielectric Interfaces
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Abstract—n Yee's finite-difference time-domain (FDTD) Region 1 Region 2
scheme, effective permittivities are often used to account for H, H,
offsets of dielectric interfaces from grid nodes. The specific values e e 'Tf €
of these effective permittivities must be chosen in such a way that : | j
the second-order accuracy of the scheme is preserved. It is shown | EL,» g EE— LAy

in this letter that, contrary to more elaborate techniques proposed
recently for the development of these effective permittivities, a rig- 1 \ ,
L . i ang--—— g et
orous application of the integral forms of Maxwell’'s curl equations H, 7 ldAz im,
on the Yee’s lattice leads to the desired values in a straightforward ; §
fashion. Numerical experiments in a two-dimensional (2-D) cavity SR
are used to verify that the calculated effective permittivities Az
preserve the second-order accuracy of the FDTD scheme. y YL

Index Terms—Convergence of numerical methods, FDTD z
methods, numerical analysis, permittivity.

Interface

Fig. 1. Placement of electric and magnetic field nodes near a dielectric
interface for the case of 2-D TEpolarization. Dotted lines represent the

|. INTRODUCTION finite-volume cells used for the development of the discrete equations.

SlsNCE its original introduction by Yee [1] for the numericalf Maxwell’s equations over finite volumes containing the inter-
imulation of electromagnetic field interactions in homogeace, The proposed analysis confirms the validity of the effec-
neous media, the finite-difference time-domain(FDTD) methage permittivities obtained in [5]. Furthermore, numerical ex-
has been enhanced significantly and has become one of the m@siments are reported that verify the second-order accuracy of
effective methods for handling geometries of high material corthe FDTD scheme that uses the derived effective permittivities

plexity [2]. One of the issues that continues to receive attey the normal and tangential electric field components at the
tion by practitioners in the field is the impact of field discongjelectric interface.

tinuities at material interfaces on the second-order accuracy of

the finite-difference approximations of the spatial derivatives on Il. CALCULATION OF EFEECTIVE PERMITTIVITIES

Yee's lattice. For example, for the case of a dielectric material ) )

interface, properly constructed averages of the media permittiy-OUr dévelopment is based on the geometry of Fig. 1 where
ities have been proposed for accurate updating of the field cofl€ FDTD approximation of Maxwell's equations for the case
ponents in the vicinity of the interface [3], [4]. Typically, the®f two-dimensional (2-D) TE polarization case is considered.
calculation of the effective permittivities is based on a Taylorn€ dielectric interface is parallel to theaxis. Without loss of
series analysis of the electromagnetic field quantities at the 8gnerality, the dielectric media in regions 1 and 2 are assumed
electric interface. Such an analysis must be done carefully dudQd€ l0ssless, with permittivities ande, respectively. We in-

the discontinuity of the fields and/or its derivatives at dielectriteStigate the general case where the dielectric interface is offset
interfaces. Subsequently, the demonstration of the accuracy'gfm the grid points or nodes. The dielectric interface offset pa-
the calculated effective permittivities is based on the investigi@meterd, is defined as the distance of the interface from the
tion of a derivative electromagnetic wave quantity, such as tH§arest tangential electric field nods,, normalized to the grid
reflection coefficient at the dielectric interface [5], rather thafiZ€27- Thus, itis0 < d < 0.5. The temporal approximation
the examination of the second-order accuracy of the resultiRfAMPere’s law in integral form

FDTD equations. 3

It is shown in this letter that the calculation of effective per- o7 // D- dsf H-dl 1)

o A ot JJs c
mittivities for second-order accurate finite difference schemes at
a dielectric interface can be effected in a systematic and straig¥iglds
forward manner through the discretization of the integral forms

// Dn+1 .ds
S
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the tangential electric component nofg, is considered first.
The discretization of the spatial integrals in (2) related to the
temporal update of nodg, (see Fig. 1) yields

Y (m)

elEy;L—ltl(% + d)Az + 62Ey7—:1(% —d)Az + O((Az)?)
= 61Ey?k(% +d)Az+62Ey?7k(% — d)AZ—i—O((Az)?’) Region | Region 2
+AE[HYE, - B+ 0((a9)?)] S R,
+O((A1)3). 3)

In the above equations, use was made of the factihat, is
continuous across the interface and maintains the second-order

spatial accuracy for its piecewise constant representation OM%'.‘Z. Geometry of a 2-D cavity with perfectly conducting walls. Region 1 is

each cell. Rearranging (3), we obtain free space with relative permittivity, = 1. Region 2 is filled with a lossless
dielectric ofe,. = 4.

h 1.0 X (m)

Eontl _pon At ( n+1/2 g L2 )

Yok vik gz \7TR R kL2 the case of-0.5 < d < 0 considered in [5] it is easily verified
+ O((At)? + (Az)?) (4) that their result for the effective permittivity for the tangential
electric field is in agreement with our result (5). However, be-
where cause of the negative value df the effective permittivity for

. 1 1 the normal component must be assigned toAherode to the
=G tdat+(z-deao ®) left of the E,, node. Taking this into account, it is easily verified
Thus, (5) is defined as the effective permittivity for the tangefbat the analysis performed above for the derivatiortdéads
tial electric field node. In [6], similar discrete integral approac
was used to account for thin material sheets. 1 1+d d .

The effective permittivitye * for the normal electric field node e T & for —0.5<d<0 ©)
E. in the right side of the&, node can be derived in a similar ) )
manner. Considering the geometry of Fig. 1, the discontinuity B @greement with the result in [3].

the normal electric field component across the interface leads us
to write [ll. NUMERICAL EXPERIMENTS

*
z

In order to examine whether the derived effective permittiv-

Eejw=dEajn+ (1 - d)Eaja ®) ities lead to an FDTD scheme that exhibits second-order con-
whereE.: ; 1., E-»; ; represent the average valuestfin the vergence, the _elec_tromggnetic response of the two-dimensional
sub-cells in regions 1 and 2, respectively. Then, it is cavity shown in _Flg. 2 is analyzed. All WaII_s are a_ssumed to

be perfect electric conductors. Thus, analytic solutions for the
B =dE M + (1-d)EL0 Y TE, modes are readily available. They constitute the reference
results for the calculation of thB, norm of the numerical so-
=d [Ezlﬁ = At (Hmﬁll/; . — 15[@,":1/22 k) lution that is used to check the convergence rate of the FDTD
s e1Ay /2, =1/, scheme. For a given time= nAt, the L, norm of the error in
LO((AR? + (Ay)g)} the computed field dat&’.” ,, is
A j=M k=N )
+ (1 — d) |:EZ2:77k — @ Z Z (Ez77k - Ezeacact)
Lo(t) = j=1 k=1
(I, ) 0 M N
for0 <t < tmax (10)
+O((A + (20))
Wherey = (J - 1)Ay! Z = (k - 1)AZ’ EZeacact(yv 2, t)
_n At (H nt1/2 o onl/2 ) is the exact solution, and/, N are the number of nodes in
Zik et Ay \7TIHL/2k Tj—1/2,k they andz directions, respectively. For all calculations in this
+O((At)2 + (Ay)Q) @) letter, Ay = Arz. In addition,¢,,., = 26 ns , which corre-
sponds to about 10 periods of the resonance frequgnayf the
where cavity. Convergence rate is monitored by examining the max-
1 d 1—d imum value of thel., norm of the errormax(L»(t)) with cell
5 = o + o (8) size and time step as parameters.

The case where the material interface coincides with the tan-
In [5], (5) and (8) were derived using the accuracy of the rgential electric field nodes at= 0.5 m is considered first. This
flection coefficient at the dielectric boundary as a metric. Fa@orresponds to the case éf= 0 in (5) and (8). For this case,
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ever, both of them fail to maintain second-order convergence as
the cell size decreases. On the other hand, while the arithmetic
mean has inferior accuracy for coarser grids, it exhibits second
order accuracy regardless of the grid resolution and outperforms
the other two means for the case of very fine grids.

Finally, the convergence of the FDTD scheme based on the
use of the effective permittivities proposed in this letter for the
case of an offset dielectric interface from the FDTD lattice is
examined. For this purpose, the dielectric interface in the ge-
ometry of Fig. 2 is set @ = 0.51 m. This causes the offset pa-
rameterd to assume values in an arbitrary fashion in the range
—0.5 < d £ 0.5 as the cell size is varied. In Fig. 4, the plot of
the maximum value of thé&, norm of the error in the numer-
ical solution as the grid size is reduced demonstrates clearly the

Fig. 3. Comparison ofL. norm errors for three different choices for thesecond-order convergence of the FDTD scheme. As before, the

effective permittivity for the cask = 0.5 m andd = 0. The mode under study

is the TE, ;5 mode with resonant frequengy = 374.92 MHz. The solid line
indicates the reference second-order convergence slope.

max(Lz(t))

- - 2nd-order
o ~ = h=0.51m}

cell size (m)

Fig. 4. L, norm errors as a function of the cell size for the cavity o

Fig. 2 withh = 0.51 m. The mode under study is the TE mode with

resonant frequency,. = 377.49 MHz. The solid line indicates the reference

second-order convergence slope.

several different values for the effective permittivity for the up-
date of the tangential electric field at the interface have bee

convergence slope of the FDTD solution parallels the solid line
indicating the reference second-order convergence slope, inde-
pendent of the value af. We conclude that use of (5) and (8)
enables the application of the standard FDTD method for elec-
tromagnetic simulation of geometries with dielectric interfaces
offset from the lattice without compromising the second-order
accuracy of the scheme.

IV. CONCLUSIONS

In conclusion, it is shown in this letter that the effective per-
mittivities required for modeling with second order accuracy di-
electric interfaces in the standard FDTD method can be calcu-
lated in a systematic manner from the discrete approximation of
integral from of Maxwell’s curl equations over finite volumes
containing the interface. Through numerical experiments it was
demonstrated that the second-order accuracy of the discrete so-
lution is achieved irrespective of the offset of the interface from
1the lattice.
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