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Effective Permittivities for Second-Order Accurate
FDTD Equations at Dielectric Interfaces
Kyu-Pyung Hwang, Student Member, IEEE,and Andreas C. Cangellaris, Fellow, IEEE

Abstract—In Yee’s finite-difference time-domain (FDTD)
scheme, effective permittivities are often used to account for
offsets of dielectric interfaces from grid nodes. The specific values
of these effective permittivities must be chosen in such a way that
the second-order accuracy of the scheme is preserved. It is shown
in this letter that, contrary to more elaborate techniques proposed
recently for the development of these effective permittivities, a rig-
orous application of the integral forms of Maxwell’s curl equations
on the Yee’s lattice leads to the desired values in a straightforward
fashion. Numerical experiments in a two-dimensional (2-D) cavity
are used to verify that the calculated effective permittivities
preserve the second-order accuracy of the FDTD scheme.

Index Terms—Convergence of numerical methods, FDTD
methods, numerical analysis, permittivity.

I. INTRODUCTION

SINCE its original introduction by Yee [1] for the numerical
simulation of electromagnetic field interactions in homoge-

neous media, the finite-difference time-domain(FDTD) method
has been enhanced significantly and has become one of the most
effective methods for handling geometries of high material com-
plexity [2]. One of the issues that continues to receive atten-
tion by practitioners in the field is the impact of field discon-
tinuities at material interfaces on the second-order accuracy of
the finite-difference approximations of the spatial derivatives on
Yee’s lattice. For example, for the case of a dielectric material
interface, properly constructed averages of the media permittiv-
ities have been proposed for accurate updating of the field com-
ponents in the vicinity of the interface [3], [4]. Typically, the
calculation of the effective permittivities is based on a Taylor
series analysis of the electromagnetic field quantities at the di-
electric interface. Such an analysis must be done carefully due to
the discontinuity of the fields and/or its derivatives at dielectric
interfaces. Subsequently, the demonstration of the accuracy of
the calculated effective permittivities is based on the investiga-
tion of a derivative electromagnetic wave quantity, such as the
reflection coefficient at the dielectric interface [5], rather than
the examination of the second-order accuracy of the resulting
FDTD equations.

It is shown in this letter that the calculation of effective per-
mittivities for second-order accurate finite difference schemes at
a dielectric interface can be effected in a systematic and straight-
forward manner through the discretization of the integral forms
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Fig. 1. Placement of electric and magnetic field nodes near a dielectric
interface for the case of 2-D TEpolarization. Dotted lines represent the
finite-volume cells used for the development of the discrete equations.

of Maxwell’s equations over finite volumes containing the inter-
face. The proposed analysis confirms the validity of the effec-
tive permittivities obtained in [5]. Furthermore, numerical ex-
periments are reported that verify the second-order accuracy of
the FDTD scheme that uses the derived effective permittivities
for the normal and tangential electric field components at the
dielectric interface.

II. CALCULATION OF EFFECTIVE PERMITTIVITIES

Our development is based on the geometry of Fig. 1 where
the FDTD approximation of Maxwell’s equations for the case
of two-dimensional (2-D) TE polarization case is considered.
The dielectric interface is parallel to theaxis. Without loss of
generality, the dielectric media in regions 1 and 2 are assumed
to be lossless, with permittivities and , respectively. We in-
vestigate the general case where the dielectric interface is offset
from the grid points or nodes. The dielectric interface offset pa-
rameter, , is defined as the distance of the interface from the
nearest tangential electric field node,, normalized to the grid
size . Thus, it is . The temporal approximation
of Ampere’s law in integral form

(1)

yields

(2)

Effective permittivities will be derived for both components of
the electric field. The effective permittivity, , associated with
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the tangential electric component node, is considered first.
The discretization of the spatial integrals in (2) related to the
temporal update of node (see Fig. 1) yields

(3)

In the above equations, use was made of the fact that is
continuous across the interface and maintains the second-order
spatial accuracy for its piecewise constant representation over
each cell. Rearranging (3), we obtain

(4)

where

(5)

Thus, (5) is defined as the effective permittivity for the tangen-
tial electric field node. In [6], similar discrete integral approach
was used to account for thin material sheets.

The effective permittivity, for the normal electric field node
in the right side of the node can be derived in a similar

manner. Considering the geometry of Fig. 1, the discontinuity of
the normal electric field component across the interface leads us
to write

(6)

where , represent the average values of in the
sub-cells in regions 1 and 2, respectively. Then, it is

(7)

where

(8)

In [5], (5) and (8) were derived using the accuracy of the re-
flection coefficient at the dielectric boundary as a metric. For

Fig. 2. Geometry of a 2-D cavity with perfectly conducting walls. Region 1 is
free space with relative permittivity� = 1. Region 2 is filled with a lossless
dielectric of� = 4.

the case of considered in [5] it is easily verified
that their result for the effective permittivity for the tangential
electric field is in agreement with our result (5). However, be-
cause of the negative value of, the effective permittivity for
the normal component must be assigned to thenode to the
left of the node. Taking this into account, it is easily verified
that the analysis performed above for the derivation ofleads
to

for (9)

in agreement with the result in [5].

III. N UMERICAL EXPERIMENTS

In order to examine whether the derived effective permittiv-
ities lead to an FDTD scheme that exhibits second-order con-
vergence, the electromagnetic response of the two-dimensional
cavity shown in Fig. 2 is analyzed. All walls are assumed to
be perfect electric conductors. Thus, analytic solutions for the
TE modes are readily available. They constitute the reference
results for the calculation of the norm of the numerical so-
lution that is used to check the convergence rate of the FDTD
scheme. For a given time , the norm of the error in
the computed field data is

for (10)

where , ,
is the exact solution, and , are the number of nodes in
the and directions, respectively. For all calculations in this
letter, . In addition, ns , which corre-
sponds to about 10 periods of the resonance frequency,, of the
cavity. Convergence rate is monitored by examining the max-
imum value of the norm of the error, with cell
size and time step as parameters.

The case where the material interface coincides with the tan-
gential electric field nodes at m is considered first. This
corresponds to the case of in (5) and (8). For this case,
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Fig. 3. Comparison ofL norm errors for three different choices for the
effective permittivity for the caseh = 0:5 m andd = 0. The mode under study
is the TE mode with resonant frequencyf = 374:92 MHz. The solid line
indicates the reference second-order convergence slope.

Fig. 4. L norm errors as a function of the cell size for the cavity of
Fig. 2 with h = 0:51 m. The mode under study is the TE mode with
resonant frequencyf = 377:49 MHz. The solid line indicates the reference
second-order convergence slope.

several different values for the effective permittivity for the up-
date of the tangential electric field at the interface have been
proposed in the literature [3], [7], [8]. They are based on mean
values of the permittivities of the two regions

(arithmetic mean)

(harmonic mean)

(geometric mean).

(11)

Fig. 3 presents the convergence slopes for these three effec-
tive permittivities. The solid line indicates the second-order
convergence reference slope. The geometric and harmonic
means result in better accuracy for cell sizes in the range of

— , where is the free-space wavelength. How-

ever, both of them fail to maintain second-order convergence as
the cell size decreases. On the other hand, while the arithmetic
mean has inferior accuracy for coarser grids, it exhibits second
order accuracy regardless of the grid resolution and outperforms
the other two means for the case of very fine grids.

Finally, the convergence of the FDTD scheme based on the
use of the effective permittivities proposed in this letter for the
case of an offset dielectric interface from the FDTD lattice is
examined. For this purpose, the dielectric interface in the ge-
ometry of Fig. 2 is set at m. This causes the offset pa-
rameter to assume values in an arbitrary fashion in the range

as the cell size is varied. In Fig. 4, the plot of
the maximum value of the norm of the error in the numer-
ical solution as the grid size is reduced demonstrates clearly the
second-order convergence of the FDTD scheme. As before, the
convergence slope of the FDTD solution parallels the solid line
indicating the reference second-order convergence slope, inde-
pendent of the value of. We conclude that use of (5) and (8)
enables the application of the standard FDTD method for elec-
tromagnetic simulation of geometries with dielectric interfaces
offset from the lattice without compromising the second-order
accuracy of the scheme.

IV. CONCLUSIONS

In conclusion, it is shown in this letter that the effective per-
mittivities required for modeling with second order accuracy di-
electric interfaces in the standard FDTD method can be calcu-
lated in a systematic manner from the discrete approximation of
integral from of Maxwell’s curl equations over finite volumes
containing the interface. Through numerical experiments it was
demonstrated that the second-order accuracy of the discrete so-
lution is achieved irrespective of the offset of the interface from
the lattice.
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